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Structural rearrangement of solid surfaces due to competing adsorbate-substrate interactions
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Employing a generalized lattice gas theory and the Brownian dynamics simulation, we show that the
competing displacive interaction in an adsorbate may cause a continuous distortive transition in the underlying
substrate. The threshold for the transition is determined by the competition of the substrate rigidity and the
quasielastic energy induced by the adsorbate. In the presence of a strong pinning and repulsive lateral inter-
action, the resulting structure appears as a compromise between the square lattice of the substrate and the
hexagonal arrangement of the adsorbate. For hexagonal substrate lattices the simulation demonstrates that
various adsorbate structuré@som honeycomb lattices to quasicrystalline pentagonal configuratioay be
observed, depending on the effective radii of interaction. Due to the long-ranged coupling the substrate may
acquire a substructure induced by the adsorbate. This paper represents a generalization of the work published
in Phys. Rev. Lett81, 3904(1998. [S1063-651X99)01107-]

PACS numbe(s): 68.45-v

I. INTRODUCTION even larger than, the cohesive energy of the subsidtet
is demonstratedl10] that adsorption may lead to significant
Theoretical treatments of solid-liquid interfaces are tradi-lowering of the roughening temperature. Adsorption iso-
tionally based on the assumption that the solid side remaintherms for surfaces with dynamically changing morphology
unchanged under the influence of the adsorbate, while thexhibit nontrivial changes compared to the rigid substrate
latter is adjusted to a potential relief of the solid substratecase [11]. Restructuring of metal surfaces under the
[1,2]. This approximation is justified in most cases when anadsorbate-induced stregk?] is also well detectefi13—-15.
interaction between the substrate particles is much strongdthese experiments have suggested that the stress is due to
than that between the adsorbaf8 The ordering[4] and  the charge redistribution at the interface. The surface stress
interfacial rearrangement of adsorbates are mainly detecontributes significantly to the elastic energy and can give
mined by the symmetry of the substrate. Various orientationrise to a self-organization of mesoscopic structures at the
ally ordered structures may appear under the influence of thiaterface. Recent experimental investigatiph6] of adsorp-
substrate-induced strajB]. tion at close packed surfaces have suggested that some local
Another situation takes place when the surface has somdistortion of A{111} surfaces should be assumed in order to
latent instability due to the termination of the bulk crystalline interpret the diffraction patterns af-alkyl thiols. Similar
structure. Then the positions of the ideal termination do nobuckling and lateral shifts are detectgl?] for Ru{00L} in
correspond to a minimum of the surface free energy and thtéhe presence of adsorbed oxygen.
surface atoms tend to a new arrangemdit This is ob- In our previous studie$18,19 we have suggested a
served for{100 and {110 surfaces of transition metals mechanism for the distortion of dynamically changing sub-
which may reconstruct upon cooling or due to adsorpfiin  strates affected by an adsorbate with strong lateral interac-
The latter case represents the so-called adsorbate-induced t@ns. The latter tends to stabilize the hexagonal arrangement
construction. The role of an adsorbate is to reduce the suobf the overlayerwith increasing density or decreasing tem-
face tension and, therefore, to stabilize one of the possiblperatur¢. The adsorbent-adsorbate interaction favors an ar-
lattice configurations provided by the substrate. A typicalrangement compatible with the substrate symmetry. In the
example is the hydrogen-induced reconstruction DB},  presence of a strong pinning of the adsorbate and the sub-
when the adsorption causes the substrate to prefer one of fogtrate displacive degrees of freedom, one may expect a dis-
equally available configuratiori§,8]. tortive rearrangement in the substrfi8] or even melting of
For realistic unreconstructed interfaces the adsorbatehe substrate supplemented by a fragmentation of the adsor-
induced effects are not negligible. A surface may exhibitbate[19]. In this paper we present a more complete theoret-
stability or instability with respect to adsorption dependingical account of this mechanism as well as Brownian dynam-
on the nature of the adsorbate. This is due to the fact that thies (BD) results which demonstrate that various structures
adsorbate-substrate bonding energy can be comparable to, may result from the competing interactions at the interface.
We consider the solid-liquid interface, that is, the coverage
depends on the thermodynamic conditions in the bulk liquid
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class of interfaces where all the interactions are of the same
order of magnitude. Of course, the next step should be taken exp — B2 Usi(R ,fa)]
towards quantitative comparison of our results with experi- he
ments.
The paper is organized as follows. In Sec. Il we specify :H {1+fsu(Rira)}

the analytical model. Then in Sec. Ill we calculate the free

energy in the mean-field approximation and determine the

order parameter. The results of the BD simulation are pre- ZH |1+2 fsu(Ri.ra)
sented in Sec. IV. Section V contains our conclusion. “ '

- (4

1
tor > fsu(R T s (Rjre)+ -
Il. THE MODEL S

We consider a liquid in contact with an adsorbing crystaI-We consider strongly attractive and saturable forces, so that

line substrate. The substrate is assumed to be stable, that {Se can assume that a given molecule of the liquid occupies a
v_v|thout the adsorbgte it keeps a given crystalline conf|gura—sing|e site at the surface. The site is then “disabled” for
tion up to the melting temperature. The surface of the s“bf%jrther adsorption. In this case we have

strate is represented by a square two-dimensional array o
atoms. Each atom holds an adsorbing site able to attract the

molecules of the liquid. The total number of the sitedNis _

andSis the surface area. The lattice spacing and the effective exp{ _'BiZa Usi(Ry ’r“)] B 1;[ { 1+ 2,: fsu(R; ’r“)} '
diameter of the liquid molecule are denoted chsand o, (5)
respectively. The sites are assumed to have displacive de-

grees of freedom which are due to the elastic propertie
(phononic excitations or anharmonicity effeéctsf the sub- . )
strate. In the absence of the adsorbate these displacemeﬂ?é [20-23:

represent the usual vibration of the solid atoms around the

equilibrium positions{R"}, such that the average distortion fsu(Ri,r)=A8(R—R,) 8(z,— 012), (6)
(u)=R;—R? is zero. The Hamiltonian is

ﬁ'he Mayer function is chosen to be that of the sticky poten-

whereR,, is the plane projection of,, \ is the stickiness

1) parameterB=1/kT, andz, is the distance to the wall. This
potential states that a molecule can be adsorbed at the lattice
if its current position coincides with the position of a lattice

H:HS+HL+HSL1

where the contributions corresponding to the substrate and fte. . . .
the liquid are given by Note that such a procedure is valid for a description of the

chemisorption processes, but for the physisorbed systems
(like the noble gases on graphitihe contributions from all
lattice sites should be taken into account to give a proper
HS=Z UsdRi\R)), HL=E Ul(rg.rg). (2 gas-solid potentigl3]. It should be noted also that we asso-

" ap ciate a site with a substrate atom. This implicitly means that
we consider the on-top sites only. In order to account for

other typedqbridge or hollow of adsorbing sites, it is neces-

HereR; andr, denote the positions of the substrate and thesary 1o introduce a relation between the displacement of a
liquid particles, resp(_ectlvely. For the sake _of _S|mpI|C|_ty We sjte and the displacement of a group of solid atoms.
assume that the motion of the substrate units in the direction

perpendicular to the surface is forbidden. Thus, the vectors

corresponding to the solid part are two dimensional. The pair Ill. FREE ENERGY

potentials for the solid and for the liquid are given by the

values ofUggandU,, . Note that theH 5 does not describe

the entire substrate side but only the part involved in the

coupling with the liquid. The liquid is confined to a half 1 1

space limited by the plane. The coupling term is defined to Z= C_f (dRi)ef’gHSC—f (dr,)e Pt
H H . S L

be the sum of pair potentials:

The partition function of our problem is

1

141 6(Ri—Ra)6(za—o/2)}. 7)

Hsi=2 Usi(Riro). (3)
' Here C, and Cg are the normalization constantsgA;)
=Hi’\':"1dAi , with Ny being the total number of molecules of

The Boltzmann factor formed by this potential can be writtentype k. Integration over the liquid positions gives the result
in terms of the Mayer functiong (R;,r,) as [20-23
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1 Even an orderedmxn} overlayer differs in the periodicity
Z=ZE—N (dR;)e A% UsdRi R} and the symmetry from the underlying lattice. In our case the
S™s adsorbate is not presumably ordered. Only at very high den-
Ns 3 n sities will the spherically symmetriéd/, | interaction favor a
% 2 ° E pg(Rl, . Ry (8) solidlike hexagonal arrangement. Similar coupling between
A-o N! &, the “spin” and elastic degrees of freedom was studi24—

0. N ) o 26] in context of magnetoelasticity effects. Nevertheless, the
HereZ, is the partition function of the liquid near the hard majin focus of the above studies was on the influence of an
wall (i.e., without the coupling pJ(R:, ... R,) is the elastic subsystem on the criticality of the Ising one. We dis-
n-body distribution function for the same system, taken afcuss a “reverse” problem—an elastic subsystéie sub-
the lattice positions. The result above is quite similar to thaktrate under the influence of the Ising-like counterpétie
obtained in Refs[20—-23 for lattices with fixed sites. The adsorbatg In order to reduce our problem to that of a pure
only difference is that we have an additional integration oversolid with an effective Hamiltonian we should perform the
the lattice positions. Therefore, we express thesummation over all possible configuratiofts} of adsorbed
pA(Ry, ... ,R,) through then-body correlation function particles. We assume thi, , (R, ,R;) does not change the
gﬂ(Rl, Ry, sign at distances of order of the lattice spaailhgo that we

avoid frustration effect$27]. Then the summation over the

0 0 . 0 occupation numbers can be performed within the usual
Pn(R1, - Rp)=0p(Ry, ... aRn)i:H1 pi(col2) mean-field approximatiofMFA) [1,18],
and use the Kirkwood superposition approximation: WL (R R tit = Wi (R Ryt + Wi (R, Ry ()

n —WLL(Ri, R(ti(t))
0 _ b B
On(Ra. - - Ra) i,gl 92(Ri Ry)- to give the result

After these rearrangements the partition function takes the
form

I

— iNf (dRi)e‘ﬁ’zziyiUSSfRi Rj)
SVs

== z i (dR;)eA%iUsdRi R} X P12 WiL(Ri R))6;6;
Ll i !

2 sk
L
Ng o O)n XH [1+eB(Mi_2jWLL(Ri'Rj)@)j)]’ (13
X 2 %e_ﬁzi,jWLL(Ri Ry, (9) :
n=0 .

where®;=(t;) is the average occupation number at the site
where we have introduced the mean force potential for théumberedi. This quantity should be determined self-
liquid consistently by the minimization of the free energy. The fac-
tor 1/2 is introduced in order to avoid double counting.
—BW (Ri,R))=In gg(Ri,Rj). (10 To proceed further we extract the contribution corre-
sponding to the reference state, i.e., the state with the sites
Notice that the summation overj for the mean force po- located at the equilibrium positions.
tential is restricted ta,j=1,n. In order to avoid this incon-
venience we introduce the occupation numhigf@0-23, UsdRi,R)=UsdR?,R)) +Usdu;,uy),

- 0 RO
== LNJ (dR;)e~FZi1UsdRiR) Wi (R, R)) =W (Ry,Ry) + W (uj,up),
SVs
whereu;= Ri—Ri0 is the displacement vector. The partition

S @B WL RRDYY Bt (1) function can be reduced to the form

1§

= — o BFo(0) e Bi2S; jUsdu; u)
i E=e duje Vs j
where the quantity f( i)

,B,ui=|n[)\p(1)((r/2)] (12 Xeﬂ/ZEi,jWLL(UivUj)@i@jH [1+7(0)
i

plays the role of the chemical potential for the adsorbate. In

fact, each pair of the solid sites interacts throlggy poten- X {e” ALl O — 111, (14
tial plus an extra/V, | contribution, if these sites have a pair )

of adsorbed molecules. The presence of this additional inteMhereFo(®) and 7(®) are given by

action is determined by the set of occupation humbers. The 1 1

partition function(11) describes a coupling of a translation- __ - 0 POYA.@ 4 — .

ally invariant systentthe substratewith the adsorbate which Fo(©) 2 |§," Wi (R; ’R’)®'®J+ﬂ 2.: In{1=7(®)
is not translationally invariantat least on the same scale (15
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eﬁﬂi_ﬁngLL(R?,R?)@j positive or negative depending on the nature of the liquid
(0)= . (16)  and the thermodynamical conditions for the adsorption.
1+ ePri= AEWLLRT RO For instance, if th&V, | (R) is the hard sphere mean force

potential, then the curvature Bt=30/2 is negative, its mag-
In the absence of the displacement part the equations abovfude increases with increasing densitydi 30/2 then a
describe the free energy and adsorption isotherm for the rigigajr of adsorbed molecules will tend to redL[(W(R?,R?)
substrat¢ ©; = 7;(®)]. In generalFo(®) andr(0) are just <] or o extend W(R?,R") >0] the separation. Therefore,
convenient notations, since the coverage should be calcy; hegative curvature may take place when the adsorbate size
lated from the free energy which is determined from EQ.gjtfers from that of the substrate. For systems with specific

(14). interactions the curvature is temperature dependent.
Within the harmonic approximation for the potentials the
A. Harmonic approximation partition function takes the form
The displacement dependent contributions to the poten-

tials may be represented by their Taylor expansions around ';':e—ﬁFO(@))f (du,)e—ﬁlzziaiuf

the equilibrium positions. - '
UsdUi ,U) =Vs(u) +Djju-tj+- -+, (17) X e PP e Pt ), (22
Wy (U, up) =V (u) +Agupug+ - - (18  Where the displacement-dependent contributibg) (u; ,u;)

is given by
whereD;; andAj; are the elastic matrices given by

1 1
USL: - E EI aiui2®i2— E ; Aijui'ul'®i®j

_[PUsdRi\Ry) _[&ZWLL(Ri R))
i— 7 oR.aR. ' i IR )
IR IR, RO RO IR IR, RO RO 1 .
(19) 3 > In[1+7,(0){e Faiuii
1
Expansion(18) may contain a linear term which is dropped X &~ AU u0) _ 117 23)

assuming that the equilibrium positions of the substrate lat-

tice are close to extrema Oy, (u;,uj). For the substrate The logarithmic term results from the product in Ed4).

lattice such a representation is q_uitg natural because of thIehus we see that, despite the harmonic approximation used
symmetry argumenig28]. For the liquid the mean force po- the displacement contribution of the liquid part is not har-

te.nt|.al IS an ogcﬂlatmg function, exponentllally decaying monic. This is due to the fact that the mean force potential is
within a correlation length. Thus, the small displacement se- . . ;
. . L not applied to all the surface sites simultaneously, but only to
ries may seem guestionable in this case. But actually, we a

I o
interested in the liquid behavior in the neighborhood of thet%e adsorbed posrt_lons. One may expect some unbalanced

S o . forces at the domain walls between the covered and uncov-
equilibrium positions of the lattice. If the long-range effects

) . ered parts of the surface. These forces result in the anharmo-
are not prominent, then we may use the expansion above. _. . X . i
. . nicity and the many-body interaction given by the logarith-
The one-particle potentials are : . L : .
mic term which originates from the entropy associated with
different adsorbate configurations at fixed coverage. For low

2UsdRi,R; : : ;
Vs(Ui)ZVg(Ui)JFE M ui2=aiui2, coverages the concentration of the domain walls vanishes
] IR IR, R?'R? and the logarithm and the exponential could be linearized.
(20) Then the liquid contribution is harmonic,
W, (R ,R;
Vi(u)=2> {—&LF\L’(aFIQ ) w=aiu?, (21 USL:Z a’iTii(®)ui2+%_: AjTi(®)u;-uj, (24
i iR

RO RO
I ]

Wherevg(ui) is the substrate potential in the absence of theWhereT”(@) is given by

displacement correlations at the surface. In fact, this contri-

bution represents an impact from the solid bulk. In general, T.(0)=7(0)0 — 1 . (25)

the expansions given above may contain higher-order terms, . ' o2t

which account for a nonparabolicity of the one-particle po-

tentials and the many-body interaction among the displaceAt this level we have an effective harmonic Hamiltonian
ments. For the case of small displacements we can restrigtith the dynamic matrix renormalized by the overlayer ef-
ourselves by the harmonic approximation. It is worth notingfects. For arbitrary coverages the potential should be taken as

that the force constantg andD;; are positively defined due it stands. Therefore, the complicated form of thg, is the

to the thermodynamical stability of the solid side. In contrastprice we have to pay for the transformation of the random

the values ofx; andA;; are determined by the properties of adsorbate configurations into a translationally invariant po-

the liquid within the range of distances comparable with thetential. In order to estimate possible effects of this potential
lattice spacingl. This means that the latter quantities may bewe first analyze the one-body term
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FIG. 1. The one-particle potentig@V, (harmonic approxima- FIG. 2. The one-particle potenti@V, (anharmonic approxima-
tion) as a function of the dimensionless displacemerithe curves  tion, ,=1x 10~3) as a function of the dimensionless displacement
correspond toa=0 (bold solid; a/a=2,0=0.5 (dashet @/a . The curves correspond ta/a=—2,0=0.4 (bold solid; a/a
=-2,0=0.2 (dashed-dotted o/a=—-2,0=0.4 (solid. All the  =2@=0.7 (dashed-dotted a/a=—2,0=0.7 (dashedl All the
quantities are dimensionlegsee text quantities are dimensionlegsee text

B. Anharmonic effects and displacement correlation

1 1
Vl:Z V(u)=5 El aiuiz_ﬁ Z Ch There are two possible sources of anharmonic effects.
These may come from the substrate side and/or from the
1 ~ B2, adsorbate. The latter case reflects the existence of the pref-
_E Z In[1+ 7,(©){e” P45 "i—1}]. erential positions for the coverage. Actually these two factors
are in competition, since they are favored by the potentials of
(26)  different symmetries. In this paper we choose the simplest
way and take into account only the substrate anharmonicity.
The effective one-body potential of the adsorbate is already
In Fig. 1 the value of8V, is plotted as a function of the anharmonic, but not at the level of the bare poteriftiq| .
dimensionless displacement variable u; /d. It is seen that Despite some limitations, this approach suffices for our pur-
the potential becomes flatter with increasing coverage. Thiposes.
takes place for positive and for negatiwg. The equilibrium Suppose that the substrate one-particle potential contains
position u=0 is unstable if we allow for a larg@®. This  a fourth-order term, such that the resulting potential is
suggests that the adsorbate causes a random hardening ( 1 1
>0) or softening @;<<0) of the substrate. The latter loses V== > aui—- > aiui2®i2+2 yu?
stability when the fraction of distorted bonds achieves a cer- 25 29 [
tain value. A rough estimation of this fraction using the lin- 1
earization of Eq.(26) shows that the adsorbate part of the = |n[1+Ti(@){e*ﬁaiuize)i—l}]_ 27
potential is negative at-120 7(®)>0 for positive «; and B
1-207(0)<0 for negative ;. Under the condition
7(®)—1 we have a peculiarity fo® ~1/2, which is consis- The logarithmic term is conserved in the form found in the
tent with our previous estimatiori9]. preceding section. The coefficient is positive, thus, the
This instability does not mean a limitation imposed®n  substrate potential is single welled. As is shown in Fig. 2, the
since the coverage is proportional to the stickiness parametadsorbate term transforn/, into a double- or even triple-
A, which may be chosen arbitrartat least, within the welled potential. Had we included the anharmonicity of the
mode). The instability results from the harmonic approxima- adsorbate potential, we would observe multiple wells. This
tion applied to the substrate. It is qualitatively similar to thesuggests that the adsorbate drives the substrate to a set of
harmonic instability of the regular lattic€29]. The principal  new equilibrium positions. The number of new positions and
difference of our case is that a new set of the equilibriumtheir location inside the initial unit cell depend on the nature
positions is not totally controlled by the symmetry of the of the adsorbatéhe sign and the magnitude ef) and also
lattice. In fact, we have a competition between the squaren the coverage. Note that in the triple-welled case the sub-
lattice of the substrate and the hexagonal arrangement &trate equilibrium position remains accessitathough, less
which the adsorbate tends. To realize the meaning of thistablg, but in the double-welled case it is unstable. In the
effect we have to include the anharmonicity of the substrat@bsence of the correlation between the cells, the substrate is
and the correlation between the displacements. driven to a disordered configuration, since there is no pref-
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erence between the minimat least between the deepest )

ones. Taking the correlations into account, we may expect S'”*{Uﬁ'z [Dij+Tij(®)Aij]<uj>}

some ordering. Different tools are appropriate for this aim. I[{u)]= (32
Depending on the geometry of the double-welled potential, y LT U

the limiting cases of the displacive or the order-disorder in- vi EJ: (D3 +Tij (©) A5 Kuj)

stabilities may be distinguishd@®0,31]. In the case of two
deep minima separated by a high barrier the problem can bdere we introduced the dimensionless gquantities
treated within the pseudospin formalisf&9], while for a L 1 L
low barrier potential the soft mode concept is more appro- _ = _ N\ - =
priate. This allows us to predict which of two positions is vi— vy 2’ (u|>—>(u|>L, D”_)’BD'J(Z
actually realized in the presence of the correlation.

Unfortunately, it is difficult to apply these methods to our 2
problem, because the one-particle potential changes with the Ajj— BAjj 2] -
coverage. The latter should be determined self-consistently
from the free energy calculated with this potential. For thisMinimization of the free energy with respect to the average
reason we restrict ourselves by a range of the parameters displacementgu;) gives the following self-consistent rela-
which the potential keeps the triple-welled shdflee bold tion:
curve in Fig. 2. If the barriers between the minima are low,

2

we can approximate this potential by the square well.
PP P y e s (u)=—Lloi+ 2 [Dy+Ty(@)A5Ku) |, (33
—Uy, |u|<L/2
V, = - (28)  where £(x) =coth)—1/x is the Langevin function. It is
o otherwise, easy to verify that Eq.33) agrees with the definition diu;),
where U, is the depth of the well and is its width. The (u))=— IBF (34)
cutoff distance. corresponds to the flat bottom region of the ' Wi |, _o

real anharmonic potential. In addition to the one-body poten-
tial we consider the bilinear correlation term. It contains theThe second derivative gives the displacement correlation
substrate contributiox;; D;;u;u; and the bilinear combina- function

tion =;;T;;(®)Aj;u;u;, extracted from theJs . Now the

Ti;(®) function has a more complicated form which reduces _ 7 BF _5<Ui> _ 35
to Eqg. (25) in the limit of low coverages. For simplicity we Xij = _&vio?v,- 70_ | = (uiup) = Cup{uy). (39
assume the uniaxial anisotropgl] along a virtual external it
field v; . In general, Eq(33) may have many solutions depending on
how many different interaction term®(; andA ;) are taken
uiuj, ¢j=0 into account. For the simplest case of the nearest neighbor
Uj- Uj=U;u;coq ¢jj) = —uly, ey=xm (29 (NN) approximation we have

(Uy=—L[qD+T(O)AXu)], (36)
where ¢;; is the angle between two displacement vectors.
Therefore eachy; is a scalar confined betweenlL/2 and Sq(D+T(O)A)u)]

L/2. Then our problem becomes quasi-one-dimensional, withX ~ () —(u)*= 1-q(D+T(®)A)Fq(D+T(O)A)u)]’
the partition function given by (3

1 (L2 where S[x]=1/x?—1/sintf(x) and q is the coordination
E=G_BF°(®)9BU°EJ (du;) number of the lattice. The virtual field is turned off. Equa-
L2 tion (36) has a nontrivial solution under the condition
Xe_ﬁzi,j[Dij+Tij(®)Aij]uiuje_BEiviui, (30)
gD+T(®)A)<-3. (39

wherev; is a virtual displacement field introduced for con-

venience in further calculations. Introducing the MFA for the
displacements, we get the free energy excess

This equation represents an interplay between the elastic
energies of the adsorbate and the substrate. For the substrate
D is positively defined because of the thermodynamical sta-
1 bility, while A is negative fororepulsivéNN) interactions.

_ _ _ - T YRV This indicates that the set §R;’} is close to the maxima of

BR=FF©)= Al 3 121: [0y T3 ()4 i uyp W, . Then the adsorbate tends to shift frgR’} to mini-

mize the energy. If the coupling is strong, then the substrate
= In1[{u)], (31) s also involved in this motion. We deal with a distortive
[ transition from the substrate-induced orderiqg;{=0) to
that induced by the adsorbateu()=0). Within the square
where well approximation(28) this effect is described as a local
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IV. SIMULATION

To recover the structure appearing due to this transition,
we perform the BD simulatiof32] which allows us to go
beyond the small distortions up to a complete rearrangement
of the surface. A similar approach has been developed re-
cently[33—-3§ in the framework of the generalized Frenkel-
Kontorova model. We consider two interacting subsystems
of N;<1X 10° particles(wherej=1,2 for the substrate and
for the adsorbate atoms, respectiyelyhe case ofN,/N;
=1 is reported here. One of them is confined to the minima
of the external periodic potentialfy(R), which is used to
model the square crystalline surface.

0,8 -

0,6 1

<uU>

0,4-

0,24

Vo(R)=— %cos 27R,)cog27R,), (40

0,0

with the amplitudeBy=1 and the period=1.

qA In general, the substrate atoms can move from these
minima being affected by the adsorbate. Another subsystem
describes the adsorbate, which is attracted to the substrate
(moving atoms and does not interact with tkfexed) peri-

odic potential directly. For simplicity we set both atomic
massesn;=1. The equation of motion for the atomic coor-

“polarization” of the adsorbate sites due to the quasi- elastlcdmateSRJ' Is

energy induced by the adsorbate. The thresh8R) is ® . ) P

dependent, so that for a giventhere exists some threshold Rji+ 7R+ VO(R“)611+ Z V(Rji—Ry)
coverage which should be determined self-consistently.

Minimizing the free energy with respect to the cover&ye =6F(Ry 1) (41)
we get the following equation for the adsorption isotherm: it h

where I<i<N;. To model a thermal bath we apply the

EqW Gaussian random forcéF;; (1),
Or(0)1-7(0)]. (39
Eq+W

FIG. 3. The mean distortiofu) as a function ogA. D=1,0
=1 (bold solid; D=2,0=1 (dashedt D=1,0=0.9 (solid); D
=2,0=0.9 (dashed-dotted All the quantities are dimensionless
(see text

—1(0)=—

jii
42)

whereEy=(q/2)A(u)? is the average distortion energy and (

W= B8gW,_(d) is the interaction energy at the equilibrium to all atoms. The coefficieny=1 corresponds to the exter-

positions. Equationi39) represents a difference of the cover- nal viscous damping due to the energy exchange between the

ages corresponding to the distorte®)( and undistorted adsorbate and the substrate. It defines the system temperature

[ 7(®)] lattices. The difference is determined by an interplayT. We calculated the average square of velocity to control the

between the distortion enerdy, and the equilibrium cou- temperature fixed =1. Note that some temperature limita-

pling W. If Eq=0 we have® = 7(0), as it should be. Since tion should be imposed. The temperature should not be too

Eq is negative for nonzerdu), the sign of® — 7(®) de-  high. The thermal energy should be lower than the energy of

pends on the sign oV. Therefore,® > 7(0) for W<0 and interatomic interactiorfotherwise the behavior would be the

0 < 7(0®) for W>0. This difference increases with increas- Same as for a system of noninteracting atpr@ the other

ing distortion energy. If the undistorted lattice is totally cov- hand, it must be lower than the magnitulig of the sinu-

ered [7(®)—1], then ®=7(0O). This suggests that the soidal potentialotherwise the behavior would be the same

strongest coupling is expected ned©)~1/2. Note, how- as for a system without the external potentidlhe interac-

ever, that we are restricted by theat which the square well tion potential is chosen to be

approximation for the potential remains adequate. Therefore, 5

the applicability of Eq(39) is limited. V([Rjj/[)=Vjj exp(— R /aj). (43

The average displacement is plotted in Fig. 3 as a function

of A. It is seen as a shift of the threshold with increasingThe interaction is repulsive within a subsyste¥w);-0) and

substrate rigidityD. The threshold signals the second-orderis attractive for different subsystem¥ {,<<0). To stabilize

phase transition between the substrate-inducedistorted the system at short distances we introduce a short-range re-

phase and the adsorbate-induddistorted phase. The sus- Pulsing contr|but|on\/21>0 (whereV;;<Vy; anday <ajy).

ceptibility x diverges at the transition. The threshold is The characteristic rada“-, determine the range of the inter-

shifted to largerA with decreasing coverage. The asymptoticaction. The potential magnitudes and radii are measured in

increase of u) is slower for lower®. This fact agrees with terms ofBy anda, respectively.

the reduction of the distance between the shifted minima in The results of numerical simulation are summarized in

Fig. 2. Figs. 4-7. In particular, Fig.(4) represents a smalN=<2
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'é . . . . . L] . . . . g * . . . . . . . . .
2 g .
5] o . . .
g . . . . . . . . . . g . . . . .
;‘ 3 Y Y Y . . . . . . ;‘ ° b L] . ° hd . : . M
x - coordinate x - coordinate
(a) (b)

FIG. 4. Fragments of two characteristic initial and final substrate configurafi@nisiitial ideal square lattice(b) the adsorbate-driven
structure corresponding t9,,=V,,=50, V,;=V142, V,,=3V,,. Other model parameters were taken as folloms=a,,=0.875a;,
=0.5, a,;=0.0125. All the quantities are dimensionlé¢sse texk

x10? particle3 fragment of the initial substrate configura- Fig. 6, which represents the evolution of the specific peaks
tion. This structure conserves if the interatomic interactionsvith increasing adsorbate-adsorbate interactign

are negligible. At nonzero interaction the structure that de- The rate of interaction at which theb’ peaks become
velops in time usually consists of different symmetry do-indistinguishable is quite sensitive to the noise produced by
mains[Fig. 4(b)]. Visually one can detect sixth-, fifth-, and the random forcesF;(t). In fact, these peaks do not disap-
fourth-order local axes. This makes the intermediate strucPear at all; they become comparable to the level of the noise.
tures quite complicated for a quantitative description. The According to the general approa¢Bd], the normalized
domain wall separating the substrate- and the adsorbat@€ight difference ob (orb’) peaks for two structures deter-
driven structures is also well detected. Numerical solution ofhin€s the order parameter which is depicted in Fig. 7. To
Eq. (41), supplemented by the periodic boundary conditionsesnmatn?a}he time necessary to reach the steady state we set
enables us to calculate the density distributioagR) V2,=V3;"=50 (this corresponds to the adsorbate-driven
=3,8(R—R;;) and, after the averaging, the two-body COrre_s_tructurét. All other paraTeteri of theBrobIem 0arld tohe rela-
lation functions G; ;.(R,R")=(¢g;(R)¢;/(R’)) which are tons between themMu,=V15=50V2=3V15,V5,= V152,

the quantitative measures of the configurations observedi1=a22=0.875a1,=0.52,;=0.0125) are kept fixed. Here

The two-dimensional Fourier transform of the substrate corYij @nda;; are measured in terms of the corrugation ampli-
relation function tudeB, and the initial lattice spacing, respectively. A typical

example of such an estimation is presented in Hig\. Here

we plot a time dependence of the order parameter. Two
Gu(q)= J d(R-R")eIRRIG,(R,R’) (44) stages are clearly seen. At short times an intensive distortion

of the square lattice takes place. After that the system slowly

. U . .. relaxes to the adsorbate-driven structure. The estimation
represents our main focus. The distribution of its maxima ISyives t,=1.5x 10°X 7. The relative time is given in
max— 1- .

shown in Fig. 5. If the corrugation d8, dominates over the units oft
. max-*

V., and V,,, then both subsystems reach the square lattice
structure, determined by the substraféig. 5b)]. If Vqq (a) (b)
<V,,, then the steady state has a distorted hexagonal sym P T T . 3
metry [Fig. 5a)]. LY ) ! @ ® ® -

Note that the ideal hexagonal structure may seem ques+ 2 - b
tionable since its symmetry group is not a subgroup of the | = o - -
square symmetry. On the other hand, the hexagonal symmer
try is natural for the adsorbate, provided that the substrate is- —~ 9 - - & & &
infinitely soft. Therefore, for a finite substrate rigidity we y - y
observe the distorted structure with two common reflection | @ e
axes indicated. This makes a compromise between the squarf
(unperturbeli structure and the hexagonal one driven by the | ® 0, [ Do @ @q);
adsorbate. All intermediate distributions appear as superpo- ' ' ' ' ' : : '
sitions of these two limiting cases. Namely, thé’' maxima FIG. 5. Maxima of Gy,(q) for the substrate configurations
(and complementary to thendisappear and tha,a’ (and  shown in Fig. 4. The letters,a’ and b,b’ denote the maxima
complementarypeaks grow if one passes from the substratespecific for symmetrically different structurdsee text Dimen-
to the adsorbate-driven structure. This is demonstrated isionless wave numbers are denotedjasndq, .
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G(a) Gla) @ (b) ©

f

T

o
o

FIG. 8. Snapshots of the substra#e, adsorbatdb), and com-
mon (c) structures. Encircled area shows typical arrangement of
pentagons at the hexagonal substrate.

=

@ 0

FIG. 6. Evolution ofG,(q) with the change o¥,, described in
text. Other parameters are the same as in Fig. 4. Two sequéaces
and (b), respectively represent the transformations of the profiles known[39] to be only qualitatively correct near the ordering
along the directionsa’ andbb’ specified in Fig. 5. All the quan- transition. The latter cannot be qualified as the conventional
tities are dimensionlessee text commensurate-incommensurate transitigk], since both
subsystems form a common lattice which, however, differs
from that of the clean substrate. On the other hand, this is not
. At each step we calculated the order param-the conventional reconstructid,7], because the substrate
itself is stable. The instability towards the structural change
is induced by the adsorbate. This suggests that in the pres-
ence of competing interactions these two tendencies are
mixed to give qualitatively new structures.

The competing effects discussed above take place even if
. . ; the substrate has the hexagonal symmetry. In this case the
result is observed whevl;, changes at fixe¥5,. Since the gy metry of a close packed adlayer is the same as that of the
elastic matrices treated analytically are just the second des'ubstrate. Then the effective radij are expected to induce
rivatives of the potentials, the curvatures are proportional t%tronger impact than that of the magnitutigs. Let us recall
the potential magnitud_es_. The propor'tionality coefficient diS'that the short-ranged repulsing contribution with the magni-
appears when the rat_lo is taken. This "’.IHOWS us to Cgmparﬁjdevﬂ and the radius,, was initially introduced to stabi-
the theoretical predictioffrom Eq. (36)] with the simulation ;¢ the numerical solution. Nevertheless the repulsing cores
result. . . . are always important in reality. The range of repulsion and

The asym_ptotlc reg|me<g>—>1), _correspondmg to the its ratio to the lattice spacing depend on the nature of the
adsorbate-driven structure, is described correctly. But a dé&s,piances forming the interface. By increasing the stabiliz-
viation is seen near th_e_thre_sho_ld. This IS due to the finite bo?ﬁg a,, contribution we produce a delocalization of the ad-
Size Wh'c.h leads to _d|ff|cu|t|es n extrgctmg tpepeak frF’m sorbate. This allows us to study cooperative effects arising
the satellite fluctuations. The rate of interaction at which thedue to the long-ranged coupling between the subsystems. In
b,b" peaks become indistinguishable is quite sensitive t0 thg yition, we can investigate the configurations different from

noise produced by the random foré€ ;(t). Therefore the ,,<e tayored by the strong localization condition accepted
threshold should be associated with the inflection ppiol y g P

appearing aV/,,/V55*~0.154(the theory gives 0.183The

Then we increase th¥,, from the trivial case ofV,,
max

=0 up toVy,,
eter

P=1-G14(dp;V2)/G11(0p;V2=0),

which is plotted in Fig. ). The relative strength of inter-

action is determined a¥,,/V55". Qualitatively the same

(49)

inflection point is clearly seen at Fig.&. On the other q - I I I
hand, the threshold is predicted within the MFA, which is D - o bl_
A &
6 | . -
1,0 ) | |
. .
h N i arv | -
0,8 Ny | g}
5 I -
- ¥ o6 |
5 041 » _
v -
S ; | o b-
. - o . v
n _ . _
0,0 ' | "1 | ' |
0,0 0.5 1,0 0,0 0,5 T Al . Q-
Relative time Relaive strength of interaction | | | |
a b ‘ ‘
@ ) -10 . | | | y

-10

FIG. 7. The order parameter as a function of relative time and

strength of interactiofi(a) and (b), respectively. Numerical results
are shown by black circles. The dashed linéangives a guide, the

Eq. (36).

-6

FIG. 9. Maxima ofG,(q) for the substrate configuration shown

in Fig. 8(@). Solid lines connect the pentagonal symmetry set in the
solid curve in(b) represents the analytical estimation obtained fromfirst q shell, the dashed line indicates some of such peaks in the next
shell. All the quantities are dimensionlesee text
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is almost unchanget). The common arrangemer@) is
quite peculiar. In fact, each substrate site is a center of the
adsorbate cell.

V. CONCLUSION

: : © In this paper we have studied the influence of the adsor-

@ ® ¢ bate on the underlying substrate through the competing in-
FIG. 10. The honeycomb adsorbate structure appearing at th@ractloln between theml.. d latti h d th

hexagonal substrate with increasing range of attraction between the Employing a generalized lattice gas theory and the BD

subsystems. The common configurati@), the substratéb), and §|mulati.0n, ,We have shown that the competing displapive
adsorbatec) configurations. interaction in the adsorbate may cause a continuous distor-

tive transition in the underlying substrate.

within the theoretical study. In particular, we 8&§ =53, The threshold for the transition is determined by the com-
=1.753,,=0.84,,=2.5a,,=0.5. The énapshots ’corre- petition of the substrate rigidity and the quasielastic energy
sponding to this choice are shown in Fig. 8. The substate nduced by the adsorbate. The theoretical predictioithin
exhibits a distorted hexagonal structure, but the adsotbate e MFA) for the behavior of the order parameter agrees well

forms a pentagonal array. This is a cooperative effect appealith the simulation result.

ing due to the coupling of an adsorbate particle to many " the presence of a strong pinning and repulsive lateral
substrate particlesag,=2.5). The coupling results in an ef- Interaction, the resulting structure appears as a compromise

fective attraction between the adsorbates and favors a mupetween the square lattice of the substrate and the hexagonal
tiple bonding. Then some substrate sites remain “emppge’ ~ &rrangement of the adsorbate. _ _

is seen in(c)]. The encircled fragment represents a typical ' N€ difference of coverages for the distorted and undis-
arrangement of pentagons at the hexagonal substrate. T ted lattices is determined by the average distortion energy.

empty substrate sites contribute to the distortions observed ijjiS difference is positivenegative for attractive (repul-
the snapshota). sive) lateral interactions.

The substrate correlation function is shown in Fig. 9. For hexagonal substrate lattices the simulation demon-
Black peaks correspond to the unperturbed lattiey the strates that various agjsorbate structu(riee_m honeycomb
first q shell is shadowed In addition, two sets of the lattices to quasicrystalline pentagonal configurationay be

adsorbate-inducedpentagonal peaks are observed within observed, depending on the (_affective radii of interactiqn.
the same range af. One of these sets is indicated, the otherPU€ {0 the long-ranged coupling the substrate correlation
may be visualized by symmetrical prolongation of the armdunction may acquire additional maxima which reflect a sub-
across the central peak. This indicates that the substrate acyucture induced by the adsorbate.

quires a pentagonal substructure due to the coupling with the
adsorbate.

If we decrease the range of the substrate repulsan ( E.V.V. gratefully acknowledges financial support from
=0.42) and increase the range of attraction between the subhe French Ministry of Education, Research and Technolo-
systems §,,=0.75), then we observe a honeycomb adsorgies. For A.E.F. this work was supported in part within the
bate structure shown in Fig. (@. It is seen that the substrate CNRS Cooperation Program Ukraine-France.

ACKNOWLEDGMENTS

[1] B. N. J. Persson, Surf. Sci. Repb, 1 (1992. [11] E. D. Resnyanskii, E. I. Latkin, A. V. Myshlyavtsev, and V. I.
[2] J. Villain and M. B. Gordon, Surf. Scll25 1 (1983. Elokhin, Chem. Phys. Let248 136 (1996; E. D. Resnyan-
[3] W. Steele, Surf. Scid6, 317(1973. skii, A. V. Myshlyavtsev, V. |. Elokhin, and B. S.
[4] W. Selke, inPhase Transitions and Critical Phenomerea- Bal'’zhinimaev,ibid. 264, 174 (1997).

gggabyvcoi Iigm;) imd J. Lebowit@Academic Press, London, [12] H. Ibach, Surf. Sci. Ref29, 193(1997).
[5] A. D. Novaco and J. P. McTague, Phys. Rev. L&8, 1286 [13] ‘158E3(|\1A:ég M. Wuitig, and H. Ibach, Phys. Rev. Le8b6,

5512%2721;75 McTague and A. D. Novaco, Phys. Rev1§ [14] W. Daum, C. Stuhlmann, and H. Ibach, Phys. Rev. L&.

. 2741(1988.

[6] M.-C. Desjonqueres and D. Spanjaarddancepts in Surface
Physics edited by D. Spanjaard, Springer Series in Surface[ls] A. Grossmann, W. Erley, J. B. Hannon, and H. Ibach, Phys.

Sciences Vol. 3@Springer-Verlag, Berlin, 1993 Rev. Lett.77, 127(1996. _ _
[7] S. TithSS, A. Wander, and D. A. King, Chem. RO6G, 1291 [16] P. Fenter, A. Eberhardt, and P. Elsenberg, Scigtf 1216

(1996. (1994); N. Camillone 1, T. Y. B. Leung, and G. Scoles, Surf.
[8] V. P. Zhdanov and P. R. Norton, Langmuai2, 101 (1996. Sci. 373 333(1997).
[9] V. P. Zhdanov and B. Kasemo, J. Chem. Phy88 4582  [17] M. Lindroos, H. Pfnu, G. Held, and D. Menzel, Surf. S@22,
(1998. 451(1989.

[10] V. P. Zhdanov and B. Kasemo, Phys. Rev.5B, R10067 [18] E. V. Vakarin, A. E. Filippov, and J. P. Badiali, Phys. Rev.
(1997). Lett. 81, 3904(1998.



670 VAKARIN, FILIPPOV, BADIALI, AND HOLOVKO PRE 60

[19] E. V. Vakarin, A. E. Filippov, and J. P. Badiali, Surf. S422, [31] A. D. Bruce, Adv. Phys29, 111 (1980.

L200 (1999. [32] M. P. Allen and D. J. TildsleyComputer Simulation of Lig-
[20] J. P. Badiali, L. Blum, and M. L. Rosinberg, Chem. Phys. Lett. uids (Oxford Science Publications, Clarendon Press, Oxford,
129 149(1986. 1994).
[21] D. A. Huckaby and L. Blum, J. Chem. Phy@2 2646(1990;  [33] B. N. J. Persson, Phys. Rev. Leftl, 1212(1993; Phys. Rev.
97, 5773(1992. B 48, 18140(1993.
[22] L. Blum, Adv. Chem. Phys78, 171(1990. [34] F.-J. Elmer, Phys. Rev. 0, 4470(1994); M. Weiss and F.-J.
[23] M. L. Rosinberg, J. L. Lebowitz, and L. Blum, J. Stat. Phys. Elmer, Phys. Rev. B3, 7539(1996.
44, 153 (1980. [35] M. G. Rozman, M. Urbakh, and J. Klafter, Phys. Rev. Lé®.
[24] G. A. Baker, Jr. and J. W. Essam, Phys. Rev. L2&. 447 683(1996; Phys. Rev. 54, 6485(1996; Europhys. Lett39,

(1970; J. Chem. Physb5, 861 (1971).

[25] H. Wagner, Phys. Rev. LetR5, 31 (1970; H. Wagner, Z.
Phys.239 182(1970.

[26] L. Gunther, D. J. Bergman, and Y. Imry, Phys. Rev. L&,
558 (1971); D. J. Bergman and B. |. Halperin, Phys. Rev. B
13, 2145(1976.

[27] E. Vives and A. Planes, Phys. Rev.44, 1885(1990.

183(1997.

[36] O. M. Braun, T. Dauxois, M. V. Paliy, and M. Peyrard, Phys.
Rev. Lett.78, 1295(1997); Phys. Rev. B55, 3598(1997.

[37] M. Paliy, O. Braun, T. Dauxois, and B. Hu, Phys. Rev5&
4025(1997).

[38] O. M. Braun, A. R. Bishop, and J. ®er, Phys. Rev. Let{79,

[28] N. W. Ashcroft and N. D. MerminSolid State PhysicéHolt, 3692(1997.
Rinehart and Winston, New York, 1976 [39] L. D. Landau and E. M. LifshitzStatistical PhysicgPerga-
[29] R. Blinc and B. ZeksSoft Modes in Ferroelectrics and Anti- mon, London, 1958 .
ferroelectrics(North-Holland, Amsterdam, 1974 [40] V. P. Zhdanov, J. L. Sales, and R. O. Unac, Surf. Séil,

[30] R. A. Cowley, Adv. Phys29, 1 (1980. L599 (1997.



